Kamis, 16 Desember 2010

POLARISASI CAHAYA

POLARISASI CAHAYA (Pengkutuban)


Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi satu arah getar.

Polarisasi Gelombang menunjukkan arah medan listrik pada suatu titik yang dilewati oleh gelombang tersebut. Jenis polarisasi antena dapat dikategorikan berdasarkan polanya pada BIDANG yang TEGAK LURUS atau normal dengan sumbu propagasi.

► Gelombang yang dapat mengalami polarisasi hanyalah gelombang tranversal yang mempunyai arah getaran tegak lurus dengan arah perambatannya

► Terpolarisasi atau terkutub artinya memiliki satu arah getar tertentu saja, seperti pada gambar berikut :


1. Polarisasi Karena Pemantulan

Berkas sinar alami (sinar yang belum terpolarisasi) dijatuhkan dari medium udara, ke medium kaca (cermin datar). Dengan sudut datang i = 57o, maka sinar yang dipantulkan sudah terpolarisasi, seperti pada gambar berikut:


2. Polarisasi Karena Pemantulan dan Pembiasan

Berkas Sinar alami melalui suatu medium kaca,akan dipantulakna dan dibiaskan. Sinar perpolarisasi bila sudut pantuk dan sudut bias membentuk sudut 90, seperti pada gambar brikut :

DIFRAKSI DAN INTERFERENSI

DIFRAKSI

merupakan peristiwa pelenturan cahaya, karena adanya penghalang misalnya celah kisi. Difraksi juga bisa dijelaskan sebagai "pembelokan cahaya disekitar sebuah rintangan"

DIFRAKSI CELAH TUNGGAL

Pola difraksi yang disebabkan oleh celah tunggal dijelaskan oleh Christian Huygens. Menurut Huygens, tiap bagian celah berfungsi sebagai sumber gelombang sehingga cahaya dari satu bagian celah dapat berinterferensi dengan cahaya dari bagian celah lainnya.

Interferensi minimum yang menghasilkan garis gelap pada layar akan terjadi,

jika gelombang 1 dan 3 atau 2 dan 4 berbeda fase ½, atau lintasannya sebesar setengah panjang gelombang. Perhatikan Gambar



Berdasarkan Gambar tersebut, diperoleh beda lintasan kedua gelombang (d sin θ)/2.

ΔS = (d sin θ)/2 dan ΔS = ½ λ, jadi d sin θ = λ

Jika celah tunggal itu dibagi menjadi empat bagian, pola interferensi minimumnya menjadi

ΔS = (d sin θ)/4 dan ΔS = ½ λ, jadi d sin θ = 2 λ.

Berdasarkan penurunan persamaan interferensi minimum tersebut, diperoleh persamaan sebagai berikut.

d sin θ = mλ

dengan: d = lebar celah

m = 1, 2, 3, . . .

Untuk mendapatkan pola difraksi maksimum, maka setiap cahaya yang melewati celah harus sefase. Beda lintasan dari interferensi minimum tadi harus dikurangi dengan sehingga beda fase keduanya mejadi 360°. Persamaan interferensi maksimum dari pola difraksinya akan menjadi :


Dengan (2m – 1) adalah bilangan ganjil, m = 1, 2, 3, …

DIFRAKSI CELAH KISI

Kisi difraksi terdiri dari sejumlah celah sejajar yang serba sama. Kisi dibuat dengan membuat goresan halus pada keping kaca.
Umumnya mempunyai goresan mencapai 5000 goresan/cm, sehingga jarak antara 2 celah sangat kecil yaitu sekitar 1/5000 = 20.000 A.

Disebut kisi difraksi jika jumlah kisi menjadi n buah, pada umumnya:
Ncelah = ~ribuan buah per mm
Posisi maksimum terjadi pada :







INTERFERENSI

Interferensi adalah penjumlahan superposisi dari dua gelombang cahaya atau lebih yang menimbulkan pola gelombang yang baru.
Interferensi dapat bersifat membangun dan merusak. Bersifat membangun jika beda fase kedua gelombang sama sehingga gelombang baru yang terbentuk adalah penjumlahan dari kedua gelombang tersebut.
Bersifat merusak jika beda fasenya adalah 180 derajat, sehingga kedua gelombang saling menghilangkan.


Syarat Interferensi Cahaya :

Kedua sumber cahaya harus bersifat kokeren (Kedua sumber cahaya mempunyai beda fase,frekuensi dan amplitude sama)

Thomas Young, seorang ahli fisika membuat dua sumber cahaya dari satu sumber cahaya, yang dijatukan pada dua buah celah sempit.

Secara matematika rumus untuk mendapatkan pola terang dan gelap Sbb:



S1 = Sumber cahaya

S2 dan S3, dua sumber cahaya baru., d = jarak antar dua sumber c

θ= sudut belok, a=l = jarak antara dua sumber terhadap layar
Interferensi maksimum/terang/konstruktif, terjadi bila :


atau



Keterangan :
P=jarak dari terang/gelap ke-m dengan terang pusat (meter)
d=jarak kedua sumber cahaya/celah(meter)
l=jarak antara sumber cahaya dengan layar (meter)
m=bilangan (1,2,3…dst)
l=panjang gelombang (meter, atau Amstrong A0=1.10-10meter)

Interferensi Minimum/Gelap/Destrutip, terjadi jika:


atau


Rabu, 23 Juni 2010

TERMODINAMIKA

TERMODINAMIKA

Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.

W = p∆V= p(V2 – V1)

Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

pers01Tekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.

fig2004Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik

pers02

untuk gas diatomik

pers03

Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.



Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

Q = W + ∆U

Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.

Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.

Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai

pers04Dimana V2 dan V1 adalah volume akhir dan awal gas.

isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.

QV = ∆U

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =∆U

Dari sini usaha gas dapat dinyatakan sebagai

W = Qp − QV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).


diag11

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai


pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).


Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.

SIKLUS CARNOT

siklus carnot (mesin pendingin)
Mesin Carnot adalah mesin kalor hipotetis yang beroperasi dalam suatu siklus reversibel yang disebut siklus Carnot. Model dasar mesin ini dirancang oleh Nicolas Léonard Sadi Carnot, seorang insinyur militer Perancis pada tahun 1824. Model mesin Carnot kemudian dikembangkan secara grafis oleh Émile Clapeyron 1834, dan diuraikan secara matematis oleh Rudolf Clausius pada 1850an dan 1860an. Dari pengembangan Clausius dan Clapeyron inilah konsep dari entropi mulai muncul.
Setiap sistem termodinamika berada dalam keadaan tertentu. Sebuah siklus termodinamika terjadi ketika suatu sistem mengalami rangkaian keadaan-keadaan yang berbeda, dan akhirnya kembali ke keadaan semula. Dalam proses melalui siklus ini, sistem tersebut dapat melakukan usaha terhadap lingkungannya, sehingga disebut mesin kalor.
Sebuah mesin kalor bekerja dengan cara memindahkan energi dari daerah yang lebih panas ke daerah yang lebih dingin, dan dalam prosesnya, mengubah sebagian energi menjadi usaha mekanis. Sistem yang bekerja sebaliknya, dimana gaya eksternal yang dikerjakan pada suatu mesin kalor dapat menyebabkan proses yang memindahkan energi panas dari daerah yang lebih dingin ke energi panas disebut mesin refrigerator.
Pada diagram di samping, yang diperoleh dari tulisan Sadi Carnot berjudul Pemikiran tentang Daya Penggerak dari Api (Réflexions sur la Puissance Motrice du Feu), diilustrasikan ada dua benda A dan B, yang temperaturnya dijaga selalu tetap, dimana A memiliki temperatur lebih tinggi daripada B. Kita dapat memberikan atau melepaskan kalor pada atau dari kedua benda ini tanpa mengubah suhunya, dan bertindak sebagai dua reservoir kalor. Carnot menyebut benda A "tungku" dan benda B "kulkas".[1] Carnot lalu menjelaskan bagaimana kita bisa memperoleh daya penggerak (usaha), dengan cara memindahkan sejumlah tertentu kalor dari reservoir A ke B.
Diagram modern
Dibawah ini adalah diagram mesin Carnot sebagaimana biasanya dimodelkan dalam pembahasan modern


Diagram mesin Carnot (modern) - kalor mengalir dari reservoir bersuhu tinggi TH melalui "fluida kerja", menuju reservoir dingin TC, dan menyebabkan fluida kerja memberikan usaha mekanis kepada lingkungan, melalui siklus penyusutan (kontraksi) dan pemuaian (ekspansi).
Dalam diagram tersebut, sistem ("fluida kerja"), dapat berupa benda fluida atau uap apapun yang dapat menerima dan memancarkan kalor Q, untuk menghasilkan usaha. Carnot mengusulkan bahwa fluida ini dapat berupa zat apapun yang dapat mengalami ekspansi, seperti uap air, uap alkohol, uap raksa, gas permanen, udara, dll. Sekalipun begitu, pada tahun-tahun awal, mesin-mesin kalor biasanya memiliki beberapa konfigurasi khusus, yaitu QH disuplai oleh pendidih, dimana air didihkan pada sebuah tungku, QC biasanya adalah aliran air dingin dalam bentuk embun yang terletak di berbagai bagian mesin. Usaha keluaran W biasanya adalahh gerakan piston yang digunakan untuk memutar sebuah engkol, yang selanjutnya digunakan untuk memutar sebuah katrol. Penggunaannya biasanya untuk mengangkut air dari sebuah pertambangan garam. Carnot sendiri mendefinisikan "usaha" sebagai "berat yang diangkat melalui sebuah ketinggian".
Teorema Carnot
Sebuah mesin nyata (real) yang beroperasi dalam suatu siklus pada temperatur TH and TC tidak mungkin melebihi efisiensi mesin Carnot.


Sebuah mesin nyata (kiri) dibandingkan dengan siklus Carnot (kanan). Entropi dari sebuah material nyata berubah terhadap temperatur. Perubahan ini ditunjukkan dengan kurva pada diagram T-S. Pada gambar ini, kurva tersebut menunjukkan kesetimbangan uap-cair ( lihat siklus Rankine). Sifat irreversibel sistem dan kehilangan ekalor ke lingkungan (misalnya, disebabkan gesekan) menyebabkan siklus Carnot ideal tidak dapat terjadi pada semua langkah sebuah mesin nyata.
Teorema Carnot adalah pernyataan formal dari fakta bahwa:Tidak mungkin ada mesin yang beroperasi diantara dua reservoir panas yang lebih efisien daripada sebuah mesin Carnot yang beroperasi pada dua reservoir yang sama. Artinya, efisiensi maksimum yang dimungkinkan untuk sebuah mesin yang menggunakan temperatur tertentu diberikan oleh efisiensi mesin Carnot,

Implikasi lain dari teorema Carnot adalah mesin reversibel yang beroperasi antara dua reservoir panas yang sama memiliki efisiensi yang sama pula.
Efisiensi maksimum yang dinyatakan pada persamaan diatas dapat diperoleh jika dan hanya jika tidak ada entropi yang diciptakan dalam siklus tersebut. Jika ada, maka karena entropi adalah fungsi keadaan, untuk membuang kelebihan entropi agar dapat kembali ke keadaan semula akan melibatkan pembuangan kalor ke lingkungan, yang merupakan proses irreversibel dan akan menyebabkan turunnya efisiensi. Jadi persamaan diatas hanya memberikan efisiensi dari sebuah mesin kalor reversibel.

SIKLUS OTTO

siklus otto
Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto.
Secara thermodinamika, siklus ini memiliki 4 buah proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:

Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik
Beberapa rumus yang digunakan untuk menganalisa sebuah siklus Otto adalah sebagai berikut :
1. Proses Kompresi Adiabatis
T2/T1 = r^(k-1); p2/p1 = r^k

2. Proses Pembakaran Isokhorik
T3 = T2 + (f x Q / Cv) ; p3 = p2 ( T3 / T2)

3. Proses Ekspansi / Langkah Kerja
T4/T3 = r^(1-k) ; p4/p3 = r^(-k)

4. Kerja Siklus
W = Cv [(T3 - T2) - (T4 - T1)]

5. Tekanan Efektif Rata-rata (Mean Effective Pressure)
pme = W / (V1 – V2)

6. Daya Indikasi Motor
Pe = pme . n . i . (V1-V2) . z

Dimana parameter – parameternya adalah :
p = Tekanan gas (Kg/m^3)
T = Temperatur gas (K; Kelvin)
V = Volume gas (m^3)
r = Rasio kompresi (V1 – V2)
Cv = Panas jenis gas pada volume tetap ( kj/kg K)
k = Rasio panas jenis gas (Cp/Cv)
f = Rasio bahan bakar / udara
Q = Nilai panas bahan bakar (kj/kg)
W = Kerja (Joule)
n = Putaran mesin per detik (rps)
i = Index pengali; i=1 untuk 2 tak dan i=0.5 untuk 4 tak
z = Jumlah silinder
P = Daya ( Watt )

TEORI KINETIK GAS

TEORI KINETIK GAS

Pada pembahasan sebelumnya (hukum-hukum gas – persamaan keadaan) gurumuda sudah menjelaskan secara panjang pendek mengenai hukum om Boyle, hukum om Charles dan hukum om Gay-Lussac. Ketiga hukum gas ini baru menjelaskan hubungan antara suhu, volume dan tekanan gas secara terpisah. Hukum om obet Boyle hanya menjelaskan hubungan antara Tekanan dan volume gas. Hukum om Charles hanya menjelaskan hubungan antara volume dan suhu gas. Hukum om Gay-Lussac hanya menjelaskan hubungan antara suhu dan tekanan gas. Perlu diketahui bahwa ketiga hukum ini hanya berlaku untuk gas yang memiliki tekanan dan massa jenis yang tidak terlalu besar. Ketiga hukum ini juga hanya berlaku untuk gas yang suhunya tidak mendekati titik didih. Oya, yang dimaksudkan dengan gas di sini adalah gas yang ada dalam kehidupan kita sehari-hari. Istilah kerennya gas riil alias gas nyata… misalnya oksigen, nitrogen dkk…

Karena hukum om obet Boyle, hukum om Charles dan hukum om Gay-Lussac tidak berlaku untuk semua kondisi gas maka analisis kita akan menjadi lebih sulit. Untuk mengatasi hal ini (maksudnya untuk mempermudah analisis), kita bisa membuat suatu model gas ideal alias gas sempurna. Gas ideal tidak ada dalam kehidupan sehari-hari; yang ada dalam kehidupan sehari-hari cuma gas riil alias gas nyata. Gas ideal cuma bentuk sempurna yang sengaja kita buat untuk mempermudah analisis, mirip seperti konsep benda tegar atau fluida ideal. Ilmu fisika tuh aneh-aneh…. dari pada bikin ribet dan pusink sendiri lebih baik cari saja pendekatan yang lebih mudah ;) Kita bisa menganggap hukum Boyle, hukum Charles dan hukum Gay-Lusac berlaku pada semua kondisi gas ideal, baik ketika tekanan dan massa jenis gas sangat tinggi atau suhu gas mendekati titik didih. Adanya konsep gas ideal ini juga sangat membantu kita dalam meninjau hubungan antara ketiga hukum gas tersebut.

Biar dirimu lebih nyambung, gurumuda tulis kembali penyataan hukum Boyle, hukum Charles dan hukum Gay-Lussac.

Hukum Boyle

Berdasarkan percobaan yang dilakukannya, om Robert Boyle menemukan bahwa apabila suhu gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, volume gas semakin berkurang. Demikian juga sebaliknya ketika tekanan gas berkurang, volume gas semakin bertambah. Istilah kerennya tekanan gas berbanding terbalik dengan volume gas. Hubungan ini dikenal dengan julukan Hukum Boyle. Secara matematis ditulis sebagai berikut :

hukum-gas-ideal-aKeterangan :

hukum-gas-ideal-b

Hukum Charles

Seratus tahun setelah om Obet Boyle menemukan hubungan antara volume dan tekanan, seorang ilmuwan berkebangsaan Perancis yang bernama om Jacques Charles (1746-1823) menyelidiki hubungan antara suhu dan volume gas. Berdasarkan hasil percobaannya, om Cale menemukan bahwa apabila tekanan gas dijaga agar selalu konstan, maka ketika suhu mutlak gas bertambah, volume gas pun ikt2an bertambah, sebaliknya ketika suhu mutlak gas berkurang, volume gas juga ikut2an berkurang. Hubungan ini dikenal dengan julukan hukum Charles. Secara matematis ditulis sebagai berikut :

hukum-gas-ideal-c

Hukum Gay-Lussac

Setelah om obet Boyle dan om Charles mengabadikan namanya dalam ilmu fisika, om Joseph Gay-Lussac pun tak mau ketinggalan. Berdasarkan percobaan yang dilakukannya, om Jose menemukan bahwa apabila volume gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, suhu mutlak gas pun ikut2an bertambah. Demikian juga sebaliknya ketika tekanan gas berkurang, suhu mutlak gas pun ikut2an berkurang. Istilah kerennya, pada volume konstan, tekanan gas berbanding lurus dengan suhu mutlak gas. Hubungan ini dikenal dengan julukan Hukum Gay-Lussac. Secara matematis ditulis sebagai berikut :



Hubungan antara suhu, volume dan tekanan gas

Hukum Boyle, hukum Charles dan hukum Gay-Lussac baru menurunkan hubungan antara suhu, volume dan tekanan gas secara terpisah. Bagaimanapun ketiga besaran ini memiliki keterkaitan erat dan saling mempengaruhi. Karenanya, dengan berpedoman pada ketiga hukum gas di atas, kita bisa menurunkan hubungan yang lebih umum antara suhu, volume dan tekanan gas. Gurumuda tulis lagi ketiga perbandingan di atas biar dirimu lebih nyambung :

hukum-gas-ideal-e

Jika perbandingan 1, perbandingan 2 dan perbandingan 3 digabung menjadi satu, maka akan tampak seperti ini :

hukum-gas-ideal-fPersamaan ini menyatakan bahwa tekanan (P) dan volume (V) sebanding dengan suhu mutlak (T). Sebaliknya, volume (V) berbanding terbalik dengan tekanan (P).

Perbandingan 4 bisa dioprek menjadi persamaan :

hukum-gas-ideal-g

Keterangan :

P1 = tekanan awal (Pa atau N/m2)

P2 = tekanan akhir (Pa atau N/m2)

V1 = volume awal (m3)

V2 = volume akhir (m3)

T1 = suhu awal (K)

T2 = suhu akhir (K)

(Pa = pascal, N = Newton, m2 = meter kuadrat, m3 = meter kubik, K = Kelvin)

Contoh soal ada di bagian akhir tulisan ini… Tuh di bawah

Hubungan antara massa gas (m) dengan volume (V)

Sejauh ini kita baru meninjau hubungan antara suhu, volume dan tekanan gas. Massa gas masih diabaikan… Kok gas punya massa ya ? yupz… Setiap zat alias materi, termasuk zat gas terdiri dari atom-atom atau molekul-molekul. Karena atom atau molekul mempunyai massa maka tentu saja gas juga mempunyai massa. Kalau dirimu bingung, silahkan pelajari lagi materi Teori atom dan Teori kinetik.

Pernah meniup balon ? ketika dirimu meniup balon, semakin banyak udara yang dimasukkan, semakin kembung balon tersebut. Dengan kata lain, semakin besar massa gas, semakin besar volume balon. Kita bisa mengatakan bahwa massa gas (m) sebanding alias berbanding lurus dengan volume gas (V). Secara matematis ditulis seperti ini :

hukum-gas-ideal-hJika perbandingan 4 digabung dengan perbandingan 5 maka akan tampak seperti ini :

hukum-gas-ideal-i

Jumlah mol (n)

Sebelum melangkah lebih jauh, terlebih dahulu kita bahas konsep mol. Dari pada kelamaan, kita langsung ke sasaran saja… 1 mol = besarnya massa suatu zat yang setara dengan massa molekul zat tersebut. Massa dan massa molekul tuh beda. Biar paham, amati contoh di bawah…

Contoh 1, massa molekul gas Oksigen (O2) = 16 u + 16 u = 32 u (setiap molekul oksigen berisi 2 atom Oksigen, di mana masing-masing atom Oksigen mempunyai massa 16 u). Dengan demikian, 1 mol O2 mempunyai massa 32 gram. Atau massa molekul O2 = 32 gram/mol = 32 kg/kmol

Contoh 2, massa molekul gas karbon monooksida (CO) = 12 u + 16 u = 28 u (setiap molekul karbon monooksida berisi 1 atom karbon (C) dan 1 atom oksigen (O). Massa 1 atom karbon = 12 u dan massa 1 atom Oksigen = 16 u. 12 u + 16 u = 28 u). Dengan demikian, 1 mol CO mempunyai massa 28 gram. Atau massa molekul CO = 28 gram/mol = 28 kg/kmol

Contoh 3, massa molekul gas karbon dioksida (CO2) = [12 u + (2 x 16 u)] = [12 u + 32 u] = 44 u (setiap molekul karbon dioksida berisi 1 atom karbon (C) dan 2 atom oksigen (O). Massa 1 atom Carbon = 12 u dan massa 1 atom oksigen = 16 u). Dengan demikian, 1 mol CO2 mempunyai massa 44 gram. Atau massa molekul CO2 = 44 gram/mol = 44 kg/kmol.

Sebelumnya kita baru membahas definisi satu mol. Sekarang giliran jumlah mol (n). Pada umumnya, jumlah mol (n) suatu zat = perbandingan massa zat tersebut dengan massa molekulnya. Secara matematis ditulis seperti ini :

hukum-gas-ideal-j1

Contoh 1 : hitung jumlah mol pada 64 gram O2

Massa O2 = 64 gram

Massa molekul O2 = 32 gram/mol

hukum-gas-ideal-k

Contoh 2 : hitung jumlah mol pada 280 gram CO

Massa CO = 280 gram

Massa molekul CO = 28 gram/mol

hukum-gas-ideal-l

Contoh 3 : hitung jumlah mol pada 176 gram CO2

Massa CO2 = 176 gram

Massa molekul CO2 = 44 gram/mol

hukum-gas-ideal-m

Konstanta gas universal (R)

Perbandingan yang sudah diturunkan di atas (perbandingan 6) bisa diubah menjadi persamaan dengan menambahkan konstanta perbandingan. Btw, berdasarkan penelitian yang dilakukan om-om ilmuwan, ditemukan bahwa apabila kita menggunakan jumlah mol (n) untuk menyatakan ukuran suatu zat maka konstanta perbandingan untuk setiap gas memiliki besar yang sama. Konstanta perbandingan yang dimaksud adalah konstanta gas universal (R). Universal = umum, jangan pake bingung…

R = 8,315 J/mol.K

= 8315 kJ/kmol.K

= 0,0821 (L.atm) / (mol.K)

= 1,99 kal / mol. K

(J = Joule, K = Kelvin, L = liter, atm = atmosfir, kal = kalori)

HUKUM GAS IDEAL (dalam jumlah mol)

Setelah terseok-seok, akhirnya kita tiba di penghujung acara pengoprekan rumus. Perbandingan 6 (tuh di atas) bisa kita tulis menjadi persamaan, dengan memasukan jumlah mol (n) dan konstanta gas universal (R)…

PV = nRT

Persamaan ini dikenal dengan julukan hukum gas ideal alias persamaan keadaan gas ideal.

Keterangan :

P = tekanan gas (N/m2)

V = volume gas (m3)

n = jumlah mol (mol)

R = konstanta gas universal (R = 8,315 J/mol.K)

T = suhu mutlak gas (K)

CATATAN :

Pertama, dalam penyelesaian soal, dirimu akan menemukan istilah STP. STP tuh singkatan dari Standard Temperature and Pressure. Bahasanya orang bule… Kalau diterjemahkan ke dalam bahasa orang Indonesia, STP artinya Temperatur dan Tekanan Standar. Temperatur = suhu.

Temperatur standar (T) = 0 oC = 273 K

Tekanan standar (P) = 1 atm = 1,013 x 105 N/m2 = 1,013 x 102 kPa = 101 kPa

Kedua, dalam menyelesaikan soal-soal hukum gas, suhu alias temperatur harus dinyatakan dalam skala Kelvin (K)

Ketiga, apabila tekanan gas masih berupa tekanan ukur, ubah terlebih dahulu menjadi tekanan absolut. Tekanan absolut = tekanan atmosfir + tekanan ukur (tekanan atmosfir = tekanan udara luar)

Keempat, jika yang diketahui adalah tekanan atmosfir (tidak ada tekanan ukur), langsung oprek saja tuh soal.

Contoh soal 1 :

Pada tekanan atmosfir (101 kPa), suhu gas karbon dioksida = 20 oC dan volumenya = 2 liter. Apabila tekanan diubah menjadi 201 kPa dan suhu dinaikkan menjadi 40 oC, hitung volume akhir gas karbon dioksida tersebut…

Panduan jawaban :

P1 = 101 kPa

P2 = 201 kPa

T1 = 20 oC + 273 K = 293 K

T2 = 40 oC + 273 K = 313 K

V1 = 2 liter

V2 = ?

Tumbangkan soal :

hukum-gas-ideal-nVolume akhir gas karbon dioksida = 1,06 liter

Contoh soal 2 :

Tentukan volume 2 mol gas pada STP (anggap saja gas ini adalah gas ideal)

Panduan jawaban :

hukum-gas-ideal-oVolume 2 mol gas pada STP (temperatur dan tekanan stadard) adalah 44,8 liter. Berapa volume 1 mol gas pada STP ? itung sendiri….

Contoh soal 3 :

Volume gas oksigen pada STP = 20 m3. Berapa massa gas oksigen ?

Panduan jawaban :

Volume 1 mol gas pada STP = 22,4 liter = 22,4 dm3 = 22,4 x 10-3 m3 (22,4 x 10-3 m3/mol)

Volume gas oksigen pada STP = 20 m3

hukum-gas-ideal-p

Massa molekul oksigen = 32 gram/mol (massa 1 mol oksigen = 32 gram). Dengan demikian, massa gas oksigen adalah :

hukum-gas-ideal-q

Catatan :

Kadang massa molekul disebut sebagai massa molar. Jangan pake bingung, maksudnya sama saja… Massa molar = massa molekul

Contoh soal 4 :

Sebuah tangki berisi 4 liter gas oksigen (O2). Suhu gas oksigen tersebut = 20 oC dan tekanan terukurnya = 20 x 105 N/m2. Tentukan massa gas oksigen tersebut (massa molekul oksigen = 32 kg/kmol = 32 gram/mol)

Panduan jawaban :

P = Patm + Pukur = (1 x 105 N/m2) + (20 x 105 N/m2) = 21 x 105 N/m2

T = 20 oC + 273 = 293 K

V = 4 liter = 4 dm3 = 4 x 10-3 m3

R = 8,315 J/mol.K = 8,315 Nm/mol.K

Massa molekul O2 = 32 gram/mol = 32 kg/kmol

Massa O2 = ?

hukum-gas-ideal-rMassa gas oksigen = 110 gram = 0,11 kg

Guampang sekali khan ? hiks2…. Sering2 latihan, biar mahir

HUKUM GAS IDEAL (Dalam jumlah molekul)

Kalau sebelumnya Hukum gas ideal dinyatakan dalam jumlah mol (n), maka kali ini hukum gas ideal dinyatakan dalam jumlah molekul (N). Sebelum menurunkan persamaannya, terlebih dahulu baca pesan-pesan berikut ini…

Seperti yang telah gurumuda jelaskan sebelumnya, apabila kita menyatakan ukuran zat tidak dalam bentuk massa (m), tapi dalam jumlah mol (n), maka konstanta gas universal (R) berlaku untuk semua gas. Hal ini pertama kali ditemukan oleh alhamrum Amedeo Avogadro (1776-1856), mantan ilmuwan Italia. Sekarang beliau sudah beristirahat di alam baka… Almahrum Avogadro mengatakan bahwa ketika volume, tekanan dan suhu setiap gas sama, maka setiap gas tersebut memiliki jumlah molekul yang sama. Kalimat yang dicetak tebal ini dikenal dengan julukan hipotesa Avogadro (hipotesa = ramalan atau dugaan). Hipotesa almahrum Avogadro ini sesuai dengan kenyataan bahwa konstanta R sama untuk semua gas. Berikut ini beberapa pembuktiannya :

Pertama, jika kita menyelesaikan soal menggunakan persamaan hukum gas ideal (PV = nRT), kita akan menemukan bahwa ketika jumlah mol (n) sama, tekanan dan suhu juga sama, maka volume semua gas akan bernilai sama, apabila kita menggunakan konstanta gas universal (R = 8,315 J/mol.K). Karenanya dirimu jangan pake heran kalau pada STP, setiap gas yang memiliki jumlah mol (n) yang sama akan memiliki volume yang sama. Volume 1 mol gas pada STP = 22,4 liter. Volume 2 mol gas = 44,8 liter. Volume 3 mol gas = 67,2 liter. Dan seterusnya… ini berlaku untuk semua gas.

Kedua, jumlah molekul dalam 1 mol sama untuk semua gas. Jumlah molekul dalam 1 mol = jumlah molekul per mol = bilangan avogadro (NA). Jadi bilangan Avogadro bernilai sama untuk semua gas. Besarnya bilangan Avogadro diperoleh melalui pengukuran :

NA = 6,02 x 1023 molekul/mol = 6,02 x 1023 /mol

= 6,02 x 1026 molekul/kmol = 6,02 x 1026 /kmol

Untuk memperoleh jumlah total molekul (N), maka kita bisa mengalikan jumlah molekul per mol (NA) dengan jumlah mol (n).

hukum-gas-ideal-sKita oprek lagi persamaan Hukum Gas Ideal :

hukum-gas-ideal-tIni adalah persamaan Hukum Gas Ideal dalam bentuk jumlah molekul.

hukum-gas-ideal

Keterangan :

P = Tekanan

V = Volume

N = Jumlah total molekul

k = Konstanta Boltzmann (k = 1,38 x 10-13 J/K)

T = Suhu

Punya soal ?

Masukan saja melalui komentar, nanti gurumuda oprek… Soalnya jangan banyak2…

Berikut ini seperangkat peralatan perang dan amunisi yang mungkin dibutuhkan :

Volume

1 liter (L) = 1000 mililiter (mL) = 1000 centimeter kubik (cm3)

1 liter (L) = 1 desimeter kubik (dm3) = 1 x 10-3 m3

Tekanan

1 N/m2 = 1 Pa

1 atm = 1,013 x 105 N/m2 = 1,013 x 105 Pa = 1,013 x 102 kPa = 101,3 kPa (biasanya dipakai 101 kPa)

Pa = pascal

atm = atmosfir

Jumat, 26 Maret 2010

MOMENTUM, IMPULS dan TUMBUKAN

A. Pengertian Momentum

Momentum suatu benda adalah hasil kali massa dan kecepatan.
Dirumuskan dengan persamaan:

p = m.v m = massa ( kg)
v = kecepatan ( m/s )
p = momentum ( kg.m/s )

Momentum juga disebut jumlah gerak.
Momentum adalah besaran vector. Momentum 45 kgm/s ke utara berbeda dengan momentum 45 kgm/s ke selatan, walaupun nilai keduanya sama. Penjumlahan momentum mengikuti aturan penjumlahan vector. Misal momentum p1 dan p2 membentuk sudut α , maka resultan/ jumlah kedua momentum tersebut dapayt dituliskan dengan persamaan :

p = √ p12 + p22 + 2 p1 p2 cos α




B. Pengetian Impuls

Impuls adalah hasil kali antara gaya yang bekerja dan selang waktu gaya itu bekerja. Impuls juga sering disebut pukulan.
Dirumuskan dengan persamaan :

I = F. ∆t F = gaya ( N )
∆t = selang waktu ( s )
I = Impuls ( Ns )

Impuls merupakan besaran vector.



C. Hubungan antara imupls dan momentum

Sebuah benda massa m mula-mula bergerak dengan kecepatan v1, kemudian dipukul dengan gaya F hingga kecepatannya menjadi v2, seperti gambar di bawah, maka besarnya impuls yang bekerja pada benda tersebut adalah:
∆t
v1
v2
F
m


Sesuai dengan hukum II Newton:

I = F. ∆t , karena
v2 – v1
F = m.a dan a = –––––––––––, maka :
∆t
v2 – v1
I = m.–––––– . ∆t
∆t
I = m (v2 – v1 ) –––––> I = m v2 – m v1 atau I = p2 – p1


Dapat juga dituls I = ∆p ( Impuls merupakan perubahan momentum benda )
Contoh Soal
Sebuah benda massa 5 kg bergerak dengan kecepatan 10m/s. Hitunglah momentum yang dimiliki benda!
Penyelesian : Diketahui : m = 5 kg; v = 10 m/s
Ditanya : p = …?
Jaab : p = m.v = 5.10 = 50 kgm/s

Sebuah benda mula-mula bergerak ke utara dengan kecepatan 6 m/s, kemudian berbelok ke barat dengan kecepatan 8 m/s. Apabila massa benda 50 kg, berpakah momentum total yang dimiliki benda ?
Penyelesaian : Diketahui : v1 = 6 m/s; v2 = 8 m/s; m = 5 kg
Ditanya : p = …?
Jawab : p1 = m. v1 = 50.6 = 300 kgm/s
p1
p
P2 P2 = m. v2 = 50.8 = 400 kgm/s


––––––– –––––––––
p = √ p12 + p22 = √ 3002 + 4002 = 500 kgm/s


Sebuah gaya 25 N bekerja pada sebuah benda dalam selang waktu 0,2 sekon. Hitunglah impuls yang dikerjakan gaya tersebut pada benda
Penyelesaian : Diketahui : F = 25 N; ∆t = 0,2 s
Ditanya : I = …?
Jawab : I = F. ∆t = 25. 0,2 = 5 Ns

Sebuah bola massanya 50 gram dilempar dengan kecepatan 10 m/s, kemudian dipukul dengan gaya F hingga kecepatannya 20 m/s berlawanan arah dengan kecepatan semula.
Hitunglah impuls yang dikerjakan oleh gaya tersebut!
Jika besarnya gaya F = 150 N, berapa lama pemukul menyentuh bola?
Penyelesaian : Diketahui : m = 50 gram = 50.10–3 kg; v1 = – 10 m/s;
v2 = 20 m/s
Ditanya : a. I = …?
b. Jika F = 150 N –––> ∆t = …?
Jawab : a. I = m.( v2 – v1 ) = 50.10–3 [20 – (-10)]
= 50.10–3. 30 = 1500.10–3 = 1,5 Ns
b. I = F. ∆t ––––> 1,5 = 150. ∆t –––> ∆t = 0,01 s


D. Hukum Kekekalan Momentum dan Tumbukan

“Jumlah momentum suatu sistem sebelum dan sesudah tumbukan akan selalu tetap”
Pernyataan di atas disebut hukum kekekalan momentum dan ditulis dengan persamaan:

m1.v1 + m2.v2 = m1.v1’ + m2.v2’ m1 = massa benda 1
m2 = massa benda 2
v1 = kecepatan benda 1 sebelum tumbukan
v2 = kecepatan benda 2 sebelum tumbukan
v1’ = kecepatan benda 1 sesudah tumbukan
v2’ = kecepatan benda 2 sesudah tumbukan


E. Jenis-Jenis Tumbukan

Tumbukan Lenting Sempurna
Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang.

Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.

Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.


Tumbukan Lenting Sebagian
Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?

Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.

Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.

Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.


Tumbukan Tidak Lenting Sama Sekali

Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…

Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?

Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :

m1v1 + m2v2 = m1v’1 + m2v’2

m1v1 + m2(0) = (m1 + m2) v’

m1v1 = (m1 + m2) v’—- persamaan 1

Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru, yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum Kekekalan Momentum tidak berlaku setelah balok bergerak.

Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?

Nah, masih ingatkah dirimu pada Hukum Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.

Kita turunkan persamaannya ya ;)

Catatan :

Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.

Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.

EM1 = EM2

EP1 + EK1 = EP2 + EK2

0 + EK1 = EP2 + 0

½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2


F. Hukum Kekekalan Momentum

momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.













Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :